Abstract

Optimal ventilation strategies are fundamental to achieve net/nearly-zero energy buildings. In this study, three hybrid ventilation control strategies are proposed to minimize the cooling need in an open-plan office building, located in the center of Glasgow (Scotland). The performance of the three proposals is assessed by IDA ICE (a whole building performance simulation tool) and compared to a traditional fully mechanical ventilation system. The performance comparison includes different criteria (i.e., indoor temperature and predicated percentage of dissatisfied (PPD) for assessing the indoor comfort and CO2 level for assessing the indoor air quality). The results show that the three proposed hybrid ventilation strategies are able to minimize the cooling need to zero. They can also imply a drastic reduction of AHU heating power, compared with a mechanical ventilation system without heat recovery (or with low efficiency heat recovery). In addition, they significantly save the fan energy. The only drawback of the proposed strategies is that they might increase the space heating demand. For instance, the first and second strategies save about 75% and 50% of AHU (air handling unit) fan energy; however, the space heating increases by about 4.2 and 2.2 kWh/m2a, respectively. The third strategy features as the best proposal because it saves around 68% of fan energy with less increase (1.3 kWh/m2a) in space heating demand. Moreover, it ensures higher thermal comfort and indoor air quality levels compared to the first and second proposals.

Highlights

  • AND AIM OF THE STUDYIn cold and moderate climates, different approaches of natural cooling-ventilation systems can be used for low-energy buildings, such as simple natural ventilation by opening windows, natural ventilation with a control strategy, mechanical ventilation, combined natural and mechanical ventilation

  • Natural ventilation needs a robust design optimization in order to ensure energy savings and thermal comfort (Solgi et al, 2018; Yang et al, 2019), and in some cases, it can provide higher ventilation rates compared to mechanical ventilation, which can raise the issue if increased indoor pollutant concentration (e.g., PM2.5, PM10 and ozone) from outdoor sources in polluted urban or industrial areas (Chen et al, 2019)

  • The authors developed an automated control of the ventilation system, which enabled hybrid ventilation to be used through 28% of the cooling season days, resulting in 20% energy savings compared to traditional mechanical ventilation (Menassa et al, 2013b)

Read more

Summary

Introduction

AND AIM OF THE STUDYIn cold and moderate climates, different approaches of natural cooling-ventilation systems can be used for low-energy buildings, such as simple natural ventilation by opening windows, natural ventilation with a control strategy, mechanical ventilation, combined natural and mechanical ventilation (hybrid ventilation). Hybrid 1 uses four Stacks, Light Well and Sub-floor Plenum to manage the natural air flow through large ventilation opening areas.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.