Abstract

The Hopfield neural network (HNN) has been demonstrated to be an effective tool for the spectral mixture unmixing of hyperspectral images. However, it is extremely time consuming for such per-pixel algorithm to be utilized in real-world applications. In this letter, the implementation of a multichannel structure of HNN (named as MHNN) on a graphics processing unit (GPU) platform is proposed. According to the unmixing procedure of MHNN, three levels of parallelism, including thread, block, and stream, are designed to explore the peak computing capacity of a GPU device. In addition, constant and texture memories are utilized to further improve its computational performance. Experiments on both synthetic and real hyperspectral images demonstrated that the proposed GPU-based implementation works on the peak computing ability of a GPU device and obtains several hundred times of acceleration versus the CPU-based implementation while its unmixing performance remains unchanged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.