Abstract
Single-board computers (SBCs) are emerging as an efficient and economical solution for fog and edge computing, providing localized big data processing with lower energy consumption. Newer and faster SBCs deliver improved performance while still maintaining a compact form factor and cost-effectiveness. In recent times, researchers have addressed scheduling issues in Hadoop-based SBC clusters. Despite their potential, traditional Hadoop configurations struggle to optimize performance in heterogeneous SBC clusters due to disparities in computing resources. Consequently, we propose modifications to the scheduling mechanism to address these challenges. In this paper, we leverage the use of node labels introduced in Hadoop 3+ and define a Frugality Index that categorizes and labels SBC nodes based on their physical capabilities, such as CPU, memory, disk space, etc. Next, an adaptive configuration policy modifies the native fair scheduling policy by dynamically adjusting resource allocation in response to workload and cluster conditions. Furthermore, the proposed frugal configuration policy considers prioritizing the reduced tasks based on the Frugality Index to maximize parallelism. To evaluate our proposal, we construct a 13-node SBC cluster and conduct empirical evaluation using the Hadoop CPU and IO intensive microbenchmarks. The results demonstrate significant performance improvements compared to native Hadoop FIFO and capacity schedulers, with execution times 56% and 22% faster than the best_cap and best_fifo scenarios. Our findings underscore the effectiveness of our approach in managing the heterogeneous nature of SBC clusters and optimizing performance across various hardware configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.