Abstract

By adjustment of the arm lengths of two triphenylamine-based ligands, two nearly isostructural metal-organic frameworks (MOFs), namely, the reported nanoporous FIR-29 (FIR = Fujian Institute of Research) and the new microporous FJI-Y9 (FJI = Fujian Institute), are obtained, and all exhibit honeycomb lattices of hexagonal channels with Ca-COO chains connected by tris[(4-carboxyl)phenylduryl]amine (H3TCPA) ligands and 4,4',4''-nitrilotribenzoic acid (H3NTB) ligands, respectively. Although the Brunauer-Emmett-Teller (BET) surface area (1117 m2 g-1) and pore size (8.5 Å) of FJI-Y9 are much lower than those (BET surface area of 2061 m2 g-1 and pore size of 16 Å) of the reported FIR-29 because of the shorter arm lengths of H3NTB, the activated FJI-Y9-ht shows high H2 (202.3 cm3 g-1) and D2 (221.9 cm3 g-1) uptake under 77 K and 1 bar and C2H2 uptake of 168.9 cm3 g-1 under 273 K and 1 bar, which are all at least 48% enhancement over those of FIR-29-ht. The above results indicate that small pores in MOFs are beneficial to the uptake of some special gases including H2, D2, C2H2, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.