Abstract
Fast-paced yield improvement in strategic crops such as soybean is pivotal for achieving sustainable global food security. Precise genomic selection (GS), as one of the most effective genomic tools for recognizing superior genotypes, can accelerate the efficiency of breeding programs through shortening the breeding cycle, resulting in significant increases in annual yield improvement. In this study, we investigated the possible use of haplotype-based GS to increase the prediction accuracy of soybean yield and its component traits through augmenting the models by using sophisticated machine learning algorithms and optimized genetic information. The results demonstrated up to a 7% increase in the prediction accuracy when using haplotype-based GS over the full single nucleotide polymorphisms-based GS methods. In addition, we discover an auspicious haplotype block on chromosome 19 with significant impacts on yield and its components, which can be used for screening climate-resilient soybean genotypes with improved yield in large breeding populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.