Abstract

PurposeThe breakpoint for a 360° radiotherapy gantry is typically positioned at 180°. This arbitrary setting has not been systematically evaluated for efficiency and may cause redundant gantry rotation and extended setup times. Our study aimed to identify an optimal gantry breakpoint angle for a full-gantry proton therapy system, with the goal of minimizing gantry movement. Materials and MethodsWe analyzed 70 months of clinically delivered proton therapy plans (9152 plans, 131 883 fractions), categorizing them by treatment site and mapping the fields from a partial-gantry to full-gantry orientation. For each delivered fraction, we computed the minimum total gantry rotation angle as a function of gantry breakpoint position, which was varied between 0° and 360° in 1° steps. This analysis was performed separately within the entire plan cohort and individual treatment sites, both with and without the capability of over-rotating 10° past the breakpoint from either direction (20° overlap). The optimal gantry breakpoint was identified as one which resulted in a low average gantry rotation per fraction. ResultsConsidering mechanical constraints, 130° was identified as a reasonable balance between increased gantry-rotation efficiency and practical treatment considerations. With a 20° overlap, this selection reduced the average gantry rotation by 41.4° per fraction when compared to the standard 180° breakpoint. Disease site subgroups showed the following reduction in average gantry rotation: gastrointestinal 192.2°, thoracic 56.3°, pediatric 44.9°, genitourinary 19.9°, central nervous system 10.7°, breast 2.8°, and head and neck 0.1°. ConclusionFor a full-gantry system, a breakpoint of 130° generally outperforms the conventional 180° breakpoint. This reduction is particularly impactful for gastrointestinal, pediatric, and thoracic sites, which constitute a significant proportion of cases at our center. The adjusted breakpoint could potentially streamline patient delivery, alleviate mechanical wear, and enhance treatment precision by reducing the likelihood of patient movement during delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call