Abstract

By using fusion welding to weld AISI 304 austenitic stainless steel (ASS) and commercial copper, the creation of brittle intermetallic in the weld region that compromises the strength of the joints is the primary challenge. However, friction welding is a suitable method for joining these two materials because no obvious defects are produced at the joints. The joint strength is significantly influenced by the friction-welding-process variables including the pressure of friction, pressure of forging, time of friction, and time of forging. Throughout this study, a central composite factorial design-based empirical relationship-building effort was carried out to determine the tensile strengths of friction-welded AISI 304 austenitic stainless steels (ASS) and commercial copper alloys dissimilar joints from the process variables. The process conditions were optimized employing response surface methods in order to attain the joint’s optimum tensile strength. This research revealed that the greatest tensile strength of the joint created with the friction pressure of 60 MPa, forging pressure of 60 MPa, friction duration of 4 s, and forging time of 4 s, correspondingly, was 489 MPa. As a result, the intermetallic formation at the interface could be identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call