Abstract

Code space is a critical issue facing designers of software for embedded systems. Many traditional compiler optimizations are designed to reduce the execution time of compiled code, but not necessarily the size of the compiled code. Further, different results can be achieved by running some optimizations more than once and changing the order in which optimizations are applied. Register allocation only complicates matters, as the interactions between different optimizations can cause more spill code to be generated. The compiler for embedded systems, then, must take care to use the best sequence of optimizations to minimize code space.Since much of the code for embedded systems is compiled once and then burned into ROM, the software designer will often tolerate much longer compile times in the hope of reducing the size of the compiled code. We take advantage of this by using a genetic algorithm to find optimization sequences that generate small object codes. The solutions generated by this algorithm are compared to solutions found using a fixed optimization sequence and solutions found by testing random optimization sequences. Based on the results found by the genetic algorithm, a new fixed sequence is developed to reduce code size. Finally, we explore the idea of using different optimization sequences for different modules and functions of the same program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.