Abstract

To investigate the impact of electrode structure on Electrical Stimulation Therapy (EST) for chronic wound healing, this study designed three variants of flexible microelectrodes (FMs) with Ag-Cu coverings (ACCs), each exhibiting distinct geometrical configurations: hexagonal, cross-shaped, and serpentine. These were integrated with PPY/PDA/PANI (3/6) (full name: polypyrrole/polydopamine/polyaniline 3/6). Hydrogel dressing comprehensive animal studies, coupled with detailed electrical and mechanical modeling and simulations, were conducted to assess their performance. Results indicated that the serpentine-shaped FM outperformed its counterparts in terms of flexibility and safety, exhibiting minimal thermal effects and a reduced risk of burns. Notably, FMs with metal coverings under 3% demonstrated promising potential for optoelectronic self-powering capabilities. Additionally, simulation data highlighted the significant influence of hydrogel non-uniformity on the distribution of electrical properties across the skin surface, providing critical insights for optimizing EST protocols when employing hydrogel dressings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.