Abstract

The aim of this study was to improve the diagnostic ability of fall risk classifiers using a Bayesian approach and the Simulated Annealing (SA) algorithm. A total of 47 features from 181 records (40 Center of Pressure (CoP) indices and 7 patient descriptive variables) were analyzed. The wrapper method of feature selection using the SA algorithm was applied to optimize the cost function based on the difference of the mean minus the standard deviation of the Area Under the Curve (AUC) of the fall risk classifiers across multiple dimensions. A stratified 60-20-20% hold-out method was used for train, test, and validation sets, respectively. The results showed that although the highest performance was observed with 31 features (0.815 ± 0.110), lower variability and higher explainability were achieved with only 15 features (0.780 ± 0.055). These findings suggest that the SA algorithm is a valuable tool for feature selection for acceptable fall risk diagnosis. This method offers an alternative or complementary resource in situations where clinical tools are difficult to apply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.