Abstract
A new material characterization technique is emerging for the transmission electron microscope (TEM). Using electron energy-loss spectroscopy, real space mappings of the underlying electronic transitions in the sample, so called orbital maps, can be produced. Thus, unprecedented insight into the electronic orbitals responsible for most of the electrical, magnetic and optical properties of bulk materials can be gained. However, the incredibly demanding requirements on spatial as well as spectral resolution paired with the low signal-to-noise ratio severely limits the day-to-day use of this new technique. With the use of simulations, we strive to alleviate these challenges as much as possible by identifying optimal experimental parameters. In this manner, we investigate representative examples of a transition metal oxide, a material consisting entirely of light elements, and an interface between two different materials to find and compare acceptable ranges for sample thickness, acceleration voltage and electron dose for a scanning probe as well as for parallel illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.