Abstract

This paper investigates the application of hybrid reinforcement learning (RL) models to optimize lithium-ion batteries’ charging and discharging processes in electric vehicles (EVs). By integrating two advanced RL algorithms—deep Q-learning (DQL) and active-critic learning—within the framework of battery management systems (BMSs), this study aims to harness the combined strengths of these techniques to improve battery efficiency, performance, and lifespan. The hybrid models are put through their paces via simulation and experimental validation, demonstrating their capability to devise optimal battery management strategies. These strategies effectively adapt to variations in battery state of health (SOH) and state of charge (SOC) relative error, combat battery voltage aging, and adhere to complex operational constraints, including charging/discharging schedules. The results underscore the potential of RL-based hybrid models to enhance BMSs in EVs, offering tangible contributions towards more sustainable and reliable electric transportation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.