Abstract

The accurate energy consumption prediction in Agricultural Ground Vehicles (AGVs) holds immense potential for optimizing operational efficiency and minimizing environmental impact. However, existing optimization methods for such prediction tasks often suffer from high computational demands, hindering their practical implementation. This paper introduces a ground-breaking approach that overcomes this limitation by leveraging the potent computational power of Graphics Processing Units (GPUs) to accelerate the optimization process dramatically. We propose a novel adaptation of the Particle Swarm Optimization (PSO) algorithm, specifically tailored to the intricate multi-objective challenges of AGV energy prediction. This framework harnesses the strengths of a multi-objective approach, enabling the simultaneous optimization of prediction accuracy and model complexity. To further enhance efficiency, we seamlessly integrate GPU parallelization techniques, significantly expediting both the optimization process and the training of Artificial Neural Networks (ANNs) employed for prediction. Preliminary results demonstrate a remarkable improvement in the accuracy of AGV energy consumption predictions, directly attributed to the synergistic effect of optimizing the ANN architecture and parameters through our proposed PSO framework. This tailored PSO adaptation distinguishes itself by its ability to tackle the complex multi-objective nature of AGV energy prediction with enhanced efficiency and precision. It thus emerges as a compelling and novel solution within the realm of Machine Learning and heuristic methods for agricultural robotics, paving the way for sustainable and optimal AGV operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.