Abstract

Induction skull melting (ISM) technology could melt metals with avoiding contamination from crucible. A long-standing problem of ISM is that the low charge energy utilization and inhomogeneous fields have obstructed its application in many critical metal materials and manufacturing processes. The present work investigated the problem through the structure optimization strategy and established a numerical electromagnetic-field model to evaluate components’ eddy current loss. Based on the model, the effect of crucible and inductor structure on charge energy utilization, etc. was studied. Furtherly, the charge energy utilization was increased from 27.1 to 45.89% by adjusting the system structure. Moreover, structure modifications are proposed for enhancing electromagnetic intensity and uniformity, charge soft contact and uniform heating. The work constructed a basis for framing new solutions to the problem through ISM device structure optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.