Abstract
The growing presence of EVs in regional microgrids introduces increased variability and uncertainty in the areas’ load profiles. This paper presents a novel approach for optimizing energy and reserve minimization in a sustainable integrated microgrid with electric vehicles (EVs) by the use of the dynamic and adjustable Manta Ray Foraging (DAMRF) algorithm. The DAMRF algorithm harnesses the inherent flexibility of EVs as controllable loads and develops a comprehensive dispatch model for a large-scale EV response. The model takes into account the management, operational, and environmental costs associated with load fluctuations in the microgrid. Simulation evaluations conducted based on a practical microgrid environment validate the effectiveness of our wind–solar energy storage and management strategy. The results showcase significant improvements in energy and reserve minimization, highlighting the potential advantages of integrating EVs into sustainable microgrid systems. In addition, the DAMRF algorithm achieves lower environmental pollution control costs (USD 8000) compared to the costs associated with the Genetic Algorithm (GA) (USD 8654.639) and PSO (USD 8579.546), emphasizing its ability to effectively control and minimize environmental pollution. In addition, the DAMRF algorithm offers a more cost-effective solution for managing the power grid, and the shorter solution running time of the DAMRF is almost the same as PSO’s quicker decision-making and response times, enhancing the overall responsiveness and adaptability of the power grid management system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.