Abstract

This paper presents the stability-integrated design of a modular quadrotor (QR) unmanned aerial vehicle (UAV) that comprises four rotor ducts attached pairwise on a rectangular fuselage. Design optimization is performed, by varying the fuselage dimensions, rotor duct spacing, forward flight angle, and number of batteries, with the objective to maximize the round-trip distance travelled by the UAV subject to stability constraints. The latter is defined in terms of settling time. The design framework comprises simplified aerodynamic models, a QR dynamics model (formulated to suit an asymmetric QR design, as opposed to typical X designs), a PD control system implemented in Simulink, and integration with a CAD modeling software (for in-situ mass and inertia computations). Op- timizations are performed using a genetic algorithm. For the defined mission envelop, the QR UAV accomplishes a roundtrip distance coverage of 29 km, with a settling time of 6.9 s, where optimum designs are found to favor more symmetric rotor spacing in the XY plane. Further parametric studies provide insights into the sensitivity of the QR performance to forward flight angle and number of batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.