Abstract

Sodium-ion batteries (SIBs) are being viewed as a prime alternative to lithium-ion batteries (LIBs) due to their resource availability, cost-effectiveness, safety, and superior power performance. Layered transition metal oxide cathode materials, in particular, have garnered interest for their high theoretical capacity and extended cycle life. This study focuses on the O3-type Na0.90Cu0.22Fe0.30Mn0.48O2(NCFMO), synthesized using the polyvinylpyrrolidone combustion method, showcasing notable specific capacity and capacity retention of over 80% after 200 cycles at 1C. Hard carbon has been identified as a potential candidate for commercialization among various anode materials, due to its high reversible capacity and stable structure. We assembled and evaluated a coin SIB full cell comprised of an NCFMO cathode and hard carbon anode (HC), which demonstrated optimal electrochemical performance at a positive-to-negative capacity ratio of 0.9. The study also explored the influence of the electrolyte on electrochemical performance, with NaClO4 (0.1 M NaClO4 in PC = 100 Vol% with 2.0%FEC) found to deliver the best results. Further, we assessed the heat generation characteristics of the NCFMO/HC full cell, revealing higher total heat generation during charging compared to discharging. This comprehensive study contributes significantly to the ongoing efforts towards commercialization of SIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call