Abstract
In this work the removal efficiency of Bromuconazole and chemical oxygen demand (COD) from aqueous solution using different electrochemical processes (electro-oxidation process (EOP), electrocoagulation process (ECP) and electro- Fenton process (EFP) were investigated. All experiments were achieved at the natural pH of solution. The effects of some parameters such as current density and H2O2 concentration on COD and pesticide removal efficiency have been carried out at an initial pH of ˷8.45, current density 5,10,15,20 mA/cm2, an initial pesticide concentration of 300 mg/L, 5mM Na2SO4 support electrolyte and temperature of 30oC. The COD decrease at the end of 80 minutes of treatment from ˷1200 to 167.52 mg/L by EOP, to 248.26 mg/L by ECP, and to 237.94 mg/L by EFP. Results showed that a high COD reduction was obtained by EOP (85.59%), followed by EFP (80.48%) and electrocoagulation at (79.51 %) with a constant current density of 20, 20, 15 mA/cm2 respectively. The removal of bromuconazole pesticide exhibited a pseudo-second-order reaction with rate constant 0.0009 mg-1Lmin-1. Moreover, energy consumption, the cost of degradation and sludge formation were also determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.