Abstract

BackgroundSelective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed class of drugs in the practice of psychiatry. Cytochrome P450 (CYP) 2C19 and CYP2D6 are established as clinically relevant drug metabolizing enzymes (DMEs) that influence the pharmacokinetics of SSRIs and may either be grouped as being primarily metabolized by CYP2C19 or CYP2D6. The aim of this study is to test the hypothesis that the primary drug metabolizing pathway for SSRI antidepressants are associated with adverse drug reactions (ADRs) related to physiological modulation of organs with the highest gene tissue expression.MethodsPost-marketing ADR cases were obtained from the United States Food and Drug Administration’s Adverse Events Reporting System from each of the four quarters for the years 2016 and 2017. Cases were grouped based on one of two primary pharmacokinetic pharmacogenomic pathway biomarkers CYP2C19 and CYP2D6. Citalopram, escitalopram, and sertraline were grouped as CYP2C19 substrates and fluvoxamine, fluoxetine, and paroxetine as CYP2D6 substrates. Logistic regression was computed for the reported SSRI ADRs associated with one of two aforementioned DMEs. All data homogenization and computations were performed in R for statistical programming.ResultsThe most commonly reported ADR among the SSRIs was anxiety (n = 3,332). The top two ADRs associated with SSRIs metabolized by CYP2D6 are: nightmare (n = 983) reporting odds-ratio (OR) = 4.37 (95% confidence interval (CI) [3.67–5.20]) and panic attack (n = 1,243) OR = 2.43 (95% CI [2.11–2.79]). Contrastingly, the top two ADRs for CYP2C19 metabolized SSRIs are: electrocardiogram QT prolonged (n = 351) OR = 0.18 (95% CI [0.13–0.24]) and small for dates baby (n = 306) OR = 0.19 (95% CI [0.14–0.26]). The study tested and produced 40 statistically significant CYP2C19- and CYP2D6-biased ADRs. In overall context, the results suggest that CYPC19 SSRI substrates are associated with ADRs related to modulation of the autonomic nervous system, seizure, pain, erectile-dysfunction, and absorption. Contrastingly, CYP2D6 SSRI substrates are associated with ADRs related to nightmares, withdrawal syndrome, and de-realization of cognitive processes. The results of this study may aid as guidance to optimize drug selection in psychopharmacology.

Highlights

  • Selective serotonin reuptake inhibitors (SSRIs) may be dichotomized as clinically relevant substrates of either cytochrome P450 (CYP) 2C19 or CYP2D6 (Hefner, 2018)

  • Cytochrome P450 (CYP) 2C19 and CYP2D6 are established as clinically relevant drug metabolizing enzymes (DMEs) that influence the pharmacokinetics of SSRIs and may either be grouped as being primarily metabolized by CYP2C19 or CYP2D6

  • This study considered that genes encoding the CYP2C19 and CYP2D6 drug metabolism enzymes are expressed at various quantifiable levels within anatomic organs and hypothesized that adverse drug reactions (ADRs) were associated with altered physiology in those organs

Read more

Summary

Introduction

Selective serotonin reuptake inhibitors (SSRIs) may be dichotomized as clinically relevant substrates of either cytochrome P450 (CYP) 2C19 or CYP2D6 (Hefner, 2018). Based on clinically relevant pharmacokinetic parameters such as the area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax), SSRIs become associated with only one of two isoenzymes CYP2D6 and CYP2C19. Cytochrome P450 (CYP) 2C19 and CYP2D6 are established as clinically relevant drug metabolizing enzymes (DMEs) that influence the pharmacokinetics of SSRIs and may either be grouped as being primarily metabolized by CYP2C19 or CYP2D6. The study tested and produced 40 statistically significant CYP2C19- and CYP2D6-biased ADRs. In overall context, the results suggest that CYPC19 SSRI substrates are associated with ADRs related to modulation of the autonomic nervous system, seizure, pain, erectiledysfunction, and absorption.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call