Abstract

Combination therapy can greatly improve the efficacy of cancer treatment, so identifying the most effective drug combination and interaction can accelerate the development of combination therapy. Here we developed a computational network biological approach to identify the effective drug which inhibition risk pathway crosstalk of cancer, and then filtrated and optimized the drug combination for cancer treatment. We integrated high-throughput data concerning pan-cancer and drugs to construct miRNA-mediated crosstalk networks among cancer pathways and further construct networks for therapeutic drug. Screening by drug combination method, we obtained 687 optimized drug combinations of 83 first-line anticancer drugs in pan-cancer. Next, we analyzed drug combination mechanism, and confirmed that the targets of cancer-specific crosstalk network in drug combination were closely related to cancer prognosis by survival analysis. Finally, we save all the results to a webpage for query (http://bio-bigdata.hrbmu.edu.cn/oDrugCP/). In conclusion, our study provided an effective method for screening precise drug combinations for various cancer treatments, which may have important scientific significance and clinical application value for tumor treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.