Abstract

Calculations based on the quantum theory of mixing in single-particle tunnel junctions show that there is a fairly simple strategy for optimizing the performance of double-sideband superconductor-insulator-superconductor (SIS) quasiparticle mixers. The best mixer noise temperature is obtained when the signal source is matched to the local oscillator (LO) admittance of the junction. This applies over a very wide range of LO and DC bias conditions. These calculations support the contention that it is the energy dissipation in the device which is important in determining the noise performance, not the small signal admittance or the power gain. This appears to be another demonstration of the Callen and Welton fluctuation-dissipation theorem. which states that it is the dissipation of energy which is responsible for the noise generation in a wide range of devices, and it is this energy dissipation mechanism to which the signal should be coupled to minimize the noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call