Abstract

The main difficulty when joining magnesium (Mg) and aluminum (Al) alloys by fusion welding lies in the formation of oxide films and brittle intermetallic in the bond region which affects the integrity of the joints. However, diffusion bonding is a suitable process to join these two materials as no such characteristic defects are produced at the joints. The diffusion bonding process parameters such as bonding temperature, bonding pressure, holding time, and surface roughness of the specimen play a major role in determining the joint strength. In this investigation, an attempt was made to develop empirical relationships to predict the strengths of diffusion bonded AZ80 magnesium and AA6061 aluminum alloys dissimilar joints from the process parameters based on central composite factorial design. Response surface methodology was applied to optimize the process parameters to attain the maximum shear strength and bonding strength of the joint. From this investigation, it was found that the bonds produced with the temperature of 405.87 °C, pressure of 7.87 MPa, holding time of 29.02 min and surface roughness of 0.10 μm exhibited maximum shear strength and bonding strength of 57.70 and 76.90 MPa, respectively. The intermetallic formation at the interface was identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call