Abstract

Free recall is a fundamental paradigm for studying memory retrieval in the context of minimal cue support. Accordingly, free recall has been extensively studied using behavioral methods. However, the neural mechanisms that support free recall have not been fully investigated due to technical challenges associated with probing individual recall events with neuroimaging methods. Of particular concern is the extent to which the uncontrolled latencies associated with recall events can confer sufficient design efficiency to permit neural activation for individual conditions to be distinguished. The present study sought to rigorously assess the feasibility of testing individual free recall events with fMRI. We used both theoretically and empirically derived free recall latency distributions to generate simulated fMRI data sets and assessed design efficiency across a range of parameters that describe free recall performance and fMRI designs. In addition, two fMRI experiments empirically assessed whether differential neural activation in visual cortex at onsets determined by true free recall performance across different conditions can be resolved. Collectively, these results specify the design and performance parameters that can provide comparable efficiency between free recall designs and more traditional jittered event-related designs. These findings suggest that assessing BOLD response during free recall using fMRI is feasible, under certain conditions, and can serve as a powerful tool in understanding the neural bases of memory search and overt retrieval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.