Abstract
Depthwise convolutions are widely used in lightweight convolutional neural networks (CNNs). The performance of depthwise convolutions is mainly bounded by the memory access rather than the arithmetic operations for classic convolutions so that direct algorithms are often more efficient than indirect ones (matrix multiplication-, Winograd-, and FFT-based convolutions) with additional memory accesses. However, the existing direct implementations of depthwise convolutions on ARMv8 architectures feature a bad trade-off between register-level reuse of different tensors, which usually leads to sub-optimal performance. In this paper, we propose a new direct implementation of depthwise convolutions by means of implicit padding, register tiling, etc. Compared to the existing ones, our new implementations can incur much less communication overhead between registers and cache. Experimental results on two ARMv8 CPUs show that our implementation can averagely deliver 4.88 $$\times $$ performance improvement over the existing direct ones in open-source libraries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.