Abstract
Deep learning models have been widely used during the last decade due to their outstanding learning and abstraction capacities. However, one of the main challenges any scientist has to face using deep learning models is to establish the network’s architecture. Due to this difficulty, data scientists usually build over complex models and, as a result, most of them result computationally intensive and impose a large memory footprint, generating huge costs, contributing to climate change and hindering their use in computational-limited devices. In this paper, we propose a novel dense feed-forward neural network constructing method based on pruning and transfer learning. Its performance has been thoroughly assessed in classification and regression problems. Without any accuracy loss, our approach can compress the number of parameters by more than 70%. Even further, choosing the pruning parameter carefully, most of the refined models outperform original ones. Furthermore, we have verified that our method not only identifies a better network architecture but also facilitates knowledge transfer between the original and refined models. The results obtained show that our constructing method not only helps in the design of more efficient models but also more effective ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.