Abstract
A primary component of the wafer assembly and final testing phases of the semiconductor manufacturing process is the process of binning wherein integrated circuits are tested for speed, voltage, and other functionality requirements. Customer demand for products is satisfied using binned components. While higher functionality components can be used to satisfy lower-level demand at a profit loss, the reverse case is not an option. We investigate the important question of satisfy customer demand from available binned devices with maximum profit in terms of maximizing revenue and minimizing inventory holding costs using a mathematical programming-based solution approach. Initial results suggest our model is able to accurately produce cost-effective demand fulfilment strategies for semiconductor manufacturers in practice.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.