Abstract

Geo-distributed clouds provide an intriguing platform to deploy online social network (OSN) services. To leverage the potential of clouds, a major concern of OSN providers is optimizing the monetary cost spent in using cloud resources while considering other important requirements, including providing satisfactory quality of service (QoS) and data availability to OSN users. In this paper, we study the problem of cost optimization for the dynamic OSN on multiple geo-distributed clouds over consecutive time periods while meeting predefined QoS and data availability requirements. We model the cost, the QoS, as well as the data availability of the OSN, formulate the problem, and design an algorithm named cosplay. We carry out extensive experiments with a large-scale real-world Twitter trace over 10 geo-distributed clouds all across the US. Our results show that, while always ensuring the QoS and the data availability as required, cosplay can reduce much more one-time cost than the state-of-the-art methods, and it can also significantly reduce the accumulative cost when continuously evaluated over 48 months, with OSN dynamics comparable to real-world cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.