Abstract

To drive a large, complex, networked dynamical system toward some desired state using as few external signals as possible is a fundamental issue in the emerging field of controlling complex networks. Optimal control is referred to the situation where such a network can be fully controlled using only one driving signal. We propose a general approach to optimizing the controllability of complex networks by judiciously perturbing the network structure. The principle of our perturbation method is validated theoretically and demonstrated numerically for homogeneous and heterogeneous random networks and for different types of real networks as well. The applicability of our method is discussed in terms of the relative costs of establishing links and imposing external controllers. Besides the practical usage of our approach, its implementation elucidates, interestingly, the intricate relationship between certain structural properties of the network and its controllability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.