Abstract

A goal of redirected walking (RDW) is to allow large virtual worlds to be explored within small tracking areas. Generalized steering algorithms, such as steer-to-center, simply move the user toward locations that are considered to be collision free in most cases. The algorithm developed here, FORCE, identifies collision-free paths by using a map of the tracking area's shape and obstacles, in addition to a multistep, probabilistic prediction of the user's virtual path through a known virtual environment. In the present implementation, the path predictions describe a user's possible movements through a virtual store with aisles. Based on both the user's physical and virtual location / orientation, a search-based optimization technique identifies the optimal steering instruction given the possible user paths. Path prediction uses the map of the virtual world; consequently, the search may propose steering instructions that put the user close to walls if the user's future actions eventually lead away from the wall. Results from both simulated and real users are presented. FORCE identifies collision-free paths in 55.0 percent of the starting conditions compared to 46.1 percent for generalized methods. When considering only the conditions that result in different outcomes, redirection based on FORCE produces collision-free path 94.5 percent of the time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.