Abstract

Forest resources face numerous threats that require costly management. Hence, there is an increasing need for data-informed strategies to guide conservation practices. The introduction of the emerald ash borer to North America has caused rapid declines in ash populations (Fraxinus spp. L.). Natural resource managers are faced with a choice of either allowing ash trees to die, risking forest degradation and reduced functional resilience, or investing in conserving trees to preserve ecosystem structure and standing genetic diversity. The information needed to guide these decisions is not always readily available. Therefore, to address this concern, we used eight microsatellites to genotype 352 white ash trees (Fraxinus americana L.) across 17 populations in the Allegheny National Forest; a subset of individuals sampled are part of an insecticide treatment regimen. Genetic diversity (number of alleles and He) was equivalent in treated and untreated trees, with little evidence of differentiation or inbreeding, suggesting current insecticidal treatment is conserving local, neutral genetic diversity. Using simulations, we demonstrated that best practice is treating more populations rather than more trees in fewer populations. Furthermore, through genetic screening, conservation practitioners can select highly diverse and unique populations to maximize diversity and reduce expenditures (by up to 21%). These findings will help practitioners develop cost-effective strategies to conserve genetic diversity.

Highlights

  • The intentional and unintentional spread of non-native species is contributing to the global reduction of plant diversity and the homogenization of plant communities [1,2]

  • Our study was conducted in the Allegheny National Forest (ANF) in northwestern Pennsylvania, USA, which covers over 2075 km2 (Figure 1)

  • As genetic diversity metrics can be limited at small sample sizes, these populations were excluded for the statistical comparisons between treated and untreated plots

Read more

Summary

Introduction

The intentional and unintentional spread of non-native species is contributing to the global reduction of plant diversity and the homogenization of plant communities [1,2]. Conserving the genetic diversity of imperiled forest tree species is essential for maintaining the long-term sustainability and resilience of forest ecosystems. Genetic diversity provides the basis for adaptation to environmental and anthropogenic change [6], increases ecosystem stability and resilience [7,8], and promotes species diversity [9]. Influential is the genetic diversity of foundational species, such as large trees. It is well established that conserving genetic diversity is crucial in preventing the extinction of populations and species, very few management plans incorporate genetic monitoring in their action plans [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.