Abstract
PurposeIn recent decades, infrastructure has continued to develop as an important basis for social development and people's lives. Resource management of these large-scale projects has been immensely concerned because dozens of construction enterprises (CEs) often work together. In this situation, resource collaboration among enterprises has become a key measure to ensure project implementation. Thus, this study aims to propose a systematic multi-agent resource collaborative decision-making optimization model for large projects from a matching perspective.Design/methodology/approachThe main contribution of this work was an advancement of the current research by: (1) generalizing the resource matching decision-making problem and quantifying the relationship between CEs. (2) Based on the matching domain, the resource input costs and benefits of each enterprise in the associated group were comprehensively analyzed to build the mathematical model, which also incorporated prospect theory to map more realistic decisions. (3) According to the influencing factors of resource decision-making, such as cost, benefit and attitude of decision-makers, determined the optimal resource input in different situations.FindingsNumerical experiments were used to verify the effectiveness of the multi-agent resource matching decision (MARMD) method in this study. The results indicated that this model could provide guidance for optimal decision-making for each participating enterprise in the resource association group under different situations. And the results showed the psychological preference of decision-makers has an important influence on decision performance.Research limitations/implicationsWhile the MARMD method has been proposed in this research, MARMD still has many limitations. A more detailed matching relationship between different resource types in CEs is still not fully analyzed, and relevant studies about more accurate parameters of decision-makers’ psychological preferences should be conducted in this area in the future.Practical implicationsCompared with traditional projects, large-scale engineering construction has the characteristics of huge resource consumption and more participants. While decision-makers can determine the matching relationship between related enterprises, this is ambiguous and the wider range will vary with more participants or complex environment. The MARMD method provided in this paper is an effective methodological tool with clearer decision-making positioning and stronger actual operability, which could provide references for large-scale project resource management.Social implicationsLarge-scale engineering is complex infrastructure projects that ensure national security, increase economic development, improve people's lives and promote social progress. During the implementation of large-scale projects, CEs realize value-added through resource exchange and integration. Studying the optimal collaborative decision of multi-agent resources from a matching perspective can realize the improvement of resource transformation efficiency and promote the development of large-scale engineering projects.Originality/valueThe current research on engineering resources decision-making lacks a matching relationship, which leads to unclear decision objectives, ambiguous decision processes and poor operability decision methods. To solve these issues, a novel approach was proposed to reveal the decision mechanism of multi-agent resource optimization in large-scale projects. This paper could bring inspiration to the research of large-scale project resource management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Construction and Architectural Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.