Abstract

Collaborative crowdsensing is a team collaboration model that harnesses the intelligence of a large network of participants, primarily applied in areas such as intelligent computing, federated learning, and blockchain. Unlike traditional crowdsensing, user recruitment in collaborative crowdsensing not only considers the individual capabilities of users but also emphasizes their collaborative abilities. In this context, this paper takes a unique approach by modeling user interactions as a graph, transforming the recruitment challenge into a graph theory problem. The methodology employs an enhanced Prim algorithm to identify optimal team members by finding the maximum spanning tree within the user interaction graph. After the recruitment, the collaborative crowdsensing explored in this paper presents a challenge of unfair incentives due to users engaging in free-riding behavior. To address these challenges, the paper introduces the MR-SVIM mechanism. Initially, the process begins with a Gaussian mixture model predicting the quality of users' tasks, combined with historical reputation values to calculate their direct reputation. Subsequently, to assess users' significance within the team, aggregation functions and the improved PageRank algorithm are employed for local and global influence evaluation, respectively. Indirect reputation is determined based on users' importance and similarity with interacting peers. Considering the comprehensive reputation value derived from the combined assessment of direct and indirect reputations, and integrating the collaborative capabilities among users, we have formulated a feature function for contribution. This function is applied within an enhanced Shapley value method to assess the relative contributions of each user, achieving a more equitable distribution of earnings. Finally, experiments conducted on real datasets validate the fairness of this mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.