Abstract

Database security focuses on protecting most organization’s virtual data storage unit and confidential information from malicious threats and external attacks. To keep out data secure, we need to use a role-based access control (RBAC) approach to accurately differentiate access permissions, but SQL queries written by an authorized user have very similar characteristics and are difficult to distinguish. In this paper, we propose a method of optimizing CNN-LSTM neural networks with particle swarm optimization (PSO) to classify the roles in RBAC system. Convolutional neural network (CNN) can extract parsed SQL queries into smaller details and features through an analysis mechanism. Long short-term memory (LSTM) is also suitable for modeling the temporal information of SQL queries to recognize the context of user authorities. PSO repeatedly searches and optimizes the complex hyperparameter space of the CNN-LSTM. Our PSO-based CNN-LSTM neural networks outperform other deep learning and machine learning models in the TPC-E benchmark SQL query statement. Finally, experiments and analysis show the usefulness of PSO and identify the important SQL query features that affect user role classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.