Abstract

The replication machinery that synthesizes new copies of chromosomal DNA is located at the junction where double-stranded DNA is separated into its two strands. This replication fork DNA structure is at the heart of most assays involving DNA helicases. The helicase enzyme unwinds the replication fork structure into two single-stranded templates which are converted into two daughter duplexes by other proteins, including DNA polymerases. In eukaryotes, the CMG (Cdc45/Mcm2-7/GINS) helicase plays the pivotal role of unwinding the parental duplex DNA and at the same time interacts with numerous other proteins, including the leading strand polymerase, Pol ɛ. This chapter first describes how we design and prepare synthetic replication forks used in our CMG-related assays. Then we describe how to load CMG onto the fork. The Mcm2-7 motor subunits of CMG form a closed ring, as do all cellular replicative helicases, that encircles ssDNA for helicase function. Thus, the first step in these assays is the loading of CMG onto the fork DNA, followed by DNA unwinding and replication. We explain protocols for different strategies of preloading CMG onto the DNA fork using different ATP analogues. Additionally, the presence of Mcm10, an intimate partner of CMG, affects how CMG is preloaded onto a fork substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.