Abstract

The capability of traffic-information systems to sense the movement of millions of users and offer trip plans through mobile phones has enabled a new way of optimizing city traffic dynamics, turning transportation big data into insights and actions in a closed-loop and evaluating this approach in the real world. Existing research has applied dynamic Bayesian networks and deep neural networks to make traffic predictions from floating car data, utilized dynamic programming and simulation approaches to identify how people normally travel with dynamic traffic assignment for policy research, and introduced Markov decision processes and reinforcement learning to optimally control traffic signals. However, none of these works utilized floating car data to suggest departure times and route choices in order to optimize city traffic dynamics. In this paper, we present a study showing that floating car data can lead to lower average trip time, higher on-time arrival ratio, and higher Charypar-Nagel score compared with how people normally travel. The study is based on optimizing a partially observable discrete-time decision process and is evaluated in one synthesized scenario, one partly synthesized scenario, and three real-world scenarios. This study points to the potential of a “living lab” approach where we learn, predict, and optimize behaviors in the real world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.