Abstract

CORSIKA (COsmic Ray SImulations for KAscade) is a program for detailed simulation of extensive air showers initiated by high energy cosmic ray particles in the atmosphere, and is used today by almost all the major instruments that aim at measuring primary and secondary cosmic rays on the ground. The Cherenkov telescope array (CTA), currently under construction, is the next-generation instrument in the field of very-high-energy gamma-ray astronomy. Detailed CORSIKA Monte Carlo simulations will be regularly performed in parallel to CTA operations to estimate the instrument response functions, necessary to extract the physical properties of the cosmic sources from the measurements during data analysis. The estimated CPU time associated with these simulations is very high, of the order of 200 million HS06 hours per year. Code optimization becomes a necessity towards fast productions and limited costs. We propose in this paper multiple code transformations that aim to facilitate automatic vectorization done by the compiler, ensuring minimal external libraries requirement and high hardware portability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.