Abstract

The majority of cancer-related fatalities are due to metastatic disease. Chemotherapeutic agents are administered along with radiation in chemoradiotherapy (CRT) to control the primary tumor and systemic disease such as metastasis. This work introduces a mathematical model of CRT treatment scheduling to obtain optimal drug and radiation protocols with the objective of minimizing metastatic cancer cell populations at multiple potential sites while maintaining a desired level of control on the primary tumor. Dynamic programming framework is used to determine the optimal radiotherapy fractionation regimen and the drug administration schedule. We design efficient DP data structures and use structural properties of the optimal solution to reduce the complexity of the resulting DP algorithm. We derive closed-form expressions for optimal chemotherapy schedules in special cases. The results suggest that if there is only an additive and spatial cooperation between the chemotherapeutic drug and radiation with no in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.