Abstract

We study the layered video transmission optimization problem in the cellular networks, in which all User Equipments (UEs) require the same video content simultaneously via the cellular downlink transmission from the Base Station (BS) and Device-to-Device (D2D) transmission from other UEs. First, we propose a probability-based framework for each video layer to measure the video playback quality in terms of the outage probability. Next, the layered video transmission optimization problem is formulated as a Peak Signal-to-Noise Ratio (PSNR) loss minimization problem, which is then converted to an unmatured probability minimization problem by adding a differentiation weight on each layer based on its importance to the playback quality. In addition, we prove the formulated problem to be a log-convex optimization problem. Finally, we conduct extensive simulations to show that the proposed approach achieves the optimal allocation of the broadcast duration for each layer under various network conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.