Abstract

ObjectivesFetal mutations and fetal chromosomal abnormalities can be detected by molecular analysis of circulating cell free fetal DNA (ccffDNA) from maternal plasma. This comprehensive study was aimed to investigate and verify blood collection and blood shipping conditions that enable Noninvasive Prenatal Testing. Specifically, the impact of shipping and storage on the stability and concentration of circulating cell-free DNA (ccfDNA) in Streck® Cell-Free DNA™ Blood Collection Tubes (Streck BCTs, Streck, Omaha NE). These BCTs were designed to minimize cellular degradation, and thus effectively prevent dilution of fetal ccf DNA by maternal genomic DNA, was evaluated. Design and methodsPeripheral venous maternal blood was collected into Streck BCTs to investigate four aspects of handling and processing conditions: (1) time from blood draw to plasma processing; (2) storage temperature; (3) mechanical stress; and (4) lot-to-lot tube variations. ResultsMaternal blood stored in Streck BCTs for up to 7days at ambient temperature provides stable concentrations of ccffDNA. The amount of fetal DNA did not change over a broad range of storage temperatures (4°C, 23°C, 37°C, 40°C), but the amount of total (largely maternal) DNA increased in samples stored at 23°C and above, indicating maternal cell degradation and genomic DNA release at elevated temperatures. Shipping maternal blood in Streck BCTs, did not affect sample quality. ConclusionsMaternal plasma DNA stabilized for 0 to 7days in Streck BCTs can be used for non-invasive prenatal molecular applications, when temperatures are maintained within the broad parameters assessed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.