Abstract

The aim of this work was to study the removal of anionic Biebrich Scarlet (BS) dyes from aqueous solution by using magnetic Fe3O4 zeolite 13X (Fe3O4/13X). The composite adsorbent, synthesized by co-precipitation method, was characterized by X-ray Powder Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Vibrating Sample Magnetometry (VSM), as well as Inductively Coupled Plasma (ICP) and Zeta Potential (ZP) measurements. The three-factor Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was used for maximizing the BS dye removal from aqueous solution. The three independent variables, namely the solution pH (in the 3–9 range), initial dye concentration (30–100 mg/L) and adsorbent mass (90–350 mg/L) served as inputs to the quadratic model of adsorption capacity. The findings yielded by analysis of variance (ANOVA) confirmed the high significance of the regression model. The predicted values of the BS adsorption capacity were in good agreement with the corresponding experimental values. Optimized conditions for maximum BS dye removal by Fe3O4/13X were pH 3.10, 98.05 mg/L initial dye concentration, and 288.82 mg/L adsorbent mass. The validity of the quadratic model was examined by conducting experiments in which the optimum values of process variables were employed, and good agreement was found between the experimental and predicted values. The present study shows that magnetic zeolite can be used as an adsorbent for highly efficient BS dye removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.