Abstract

The functionalization of metal surfaces with N-heterocyclic carbenes (NHCs) has gained much interest in the past decade, since the modified materials are highly suitable for the development of specialized applications, for example in heterogeneous catalysis. More recently, multidentate NHC-ligands have been utilized to further improve the properties of the modified materials. However, the influence of the linker, which connects the NHC units, on the adsorption behavior of multidentate NHC-ligands has not been investigated so far. This knowledge is essential in order to access the full potential of applications. Here, we provide a thorough computational study, which compares the performance of bidentate NHC-ligands with twelve different linkers on the Cu(111), Pd(111) and Au(111) surfaces. It is shown that, on the Cu(111) and Au(111) surfaces, linkers should most importantly allow for a favorable arrangement of all NHC units, while aromatic linkers lead to stronger adsorption than aliphatic ones on Pd(111) surfaces. As a consequence, bidentate NHCs with aromatic linkers on Pd(111) surfaces tolerate larger deviations from the optimum single-NHC adsorption mode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.