Abstract
Phage therapy is increasing in relevance as an alternative treatment to combat antibiotic resistant bacteria. Phage cocktails are the state-of-the-art method of administering phages in clinical settings, preferred over monophage treatment because of their ability to eliminate multiple bacterial strains and reduce resistance formation. In our study, we compare monophage applications and phage cocktails to our chosen method of phage sequential treatments. To do so, we isolated four novel bacteriophages capable of infecting Pseudomonas alcaligenes T3, a close relative of P. aeruginosa, and characterized them using sequencing and transmission electron microscopy. While investigating monophage treatments, we observed that different phage concentrations had a strong impact on the timing and amount of resistance formation. When using phage cocktails, we observed that P. alcaligenes were capable of forming resistance in the same timespan it took them to become resistant to single phages. We isolated mutants resistant to each single phage as well as mutants exposed to phage cocktails, resulting in bacteria resistant to all four phages at once. Sequencing these mutants showed that different treatments yielded unique single nucleotide polymorphism mutation patterns. In order to combat resistance formation, we added phages one by one in intervals of 24 h, thus managing to delay resistance development and keeping bacterial growth significantly lower compared to phage cocktails.IMPORTANCEWHO declared antimicrobial resistance a top threat to global health; while antibiotics have stood at the forefront in the fight against bacterial infection, the increasing number of multidrug-resistant bacteria highlights a need to branch out in order to address the threat of antimicrobial resistance. Bacteriophages, viruses solely infecting bacteria, could present a solution due to their abundance, versatility, and adaptability. For this study, we isolated new phages infecting a fast-mutating Pseudomonas alcaligenes strain capable of forming resistance within 30 h. By using a sequential treatment approach of adding one phage after another, we were able to curb bacterial growth significantly more compared to state-of-the-art phage cocktails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.