Abstract

The primary goal of the study is to optimize and streamline the attendance recording and monitoring process for learning sessions by leveraging advanced technologies such as machine learning and cloud computing. The methodology employed is based on the extreme programming (XP) project management approach. Throughout its phases, the entire implementation process of the application, from conception to launch, is described in detail. Firebase is used as the database manager to ensure the efficiency and security of student information and attendance records. Additionally, the Firebase machine learning kit is used to verify attendance registration through QR codes. The application was tested with fifth-year high school students from an educational institution. The user interface has been designed to be attractive, intuitive, and easy to use for both teachers and students. The study results demonstrate that the use of this application significantly reduces the time spent on attendance recording compared to traditional methods. There has been a high level of satisfaction and acceptance of the “ASYS” application among teachers and students. In conclusion, this study has successfully implemented a mobile application that revolutionizes attendance recording and monitoring in educational institutions. It harnesses the power of machine learning and cloud computing to enhance efficiency and the user experience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.