Abstract

IntroductionThe successful cryopreservation of common carp sperm is crucial for its application in aquaculture and selective breeding programs. This study investigates the efficacy of cryopreserving sperm in large containers (5 mL) with a low dilution rate (1:1) in three different cryoprotective media and thawing in different conditions.MethodsThe developed method utilizes a low-ionic (hypotonic) cryoprotective medium, freezing with a controlled cooling rate, and high-temperature sperm thawing (60°C). The investigation employs a detailed spermatozoon motility assessment.ResultsPost-thaw motility of 32.3% ± 14% and initial curvilinear velocity of 89 ± 20 μm/s across 30 males were observed. Principal component analysis of sperm kinematic characteristics revealed distinct populations of sperm cells exhibiting varying responses to cryopreservation. The developed method achieved successful fertilization comparable to that of the non-frozen control group using sperm from a single cryotube (2.5 mL, approximately 50 * 109 spermatozoa) to fertilize 200 g of eggs (1:120,000 egg:spz).DiscussionThis novel approach demonstrates an effective cryopreservation protocol for common carp sperm in large-volume cryo-containers in combination with low-ionic cryomedia and high thawing temperature, providing methods well-suited for fisheries practices and selective breeding programs. Future studies of the biological properties of different sperm subpopulations in post-thaw sperm samples can contribute to a deeper understanding of sperm biology, improve cryopreservation techniques, and enhance the success rates of assisted reproductive technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.