Abstract

The prevalence of kidney stone disease is increasing globally, with calcium oxalate stones being the most common type. Oxalyl-CoA decarboxylase (OXC), an enzyme produced by the gut bacterium Oxalobacter formigenes, plays a crucial role in oxalate metabolism. Deficiencies in OXC activity can lead to the accumulation of oxalate, contributing to kidney stone formation. This study aimed to develop a reliable diagnostic assay for OXC by optimizing antigen production and establishing a cutoff value for an enzyme-linked immunosorbent assay (ELISA). We cloned, expressed, and purified recombinant OXC protein in Escherichia coli BL21(DE3), and generated specific polyclonal antibodies in rabbits. The ELISA system was optimized and validated using serum samples from 40 healthy individuals and 6 patients with oxalate-related disorders. The cutoff value was determined using the formula (M + 2SD), where (M) is the mean and (SD) is the standard deviation of the healthy sample results. The calculated cutoff value of 0.656750 effectively distinguished between healthy and affected individuals, with a sensitivity of 97.5% and a specificity of 83.3%. These findings provide a valuable tool for the early detection and management of oxalate-related disorders, with significant implications for clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.