Abstract
Anthocyanin-rich black cane (aBC) is a grass rich in lignin and carbohydrates, with an abundance of anthocyanins. Silages of aBC produced with molasses (MS) and/or ferrous sulphate (FS) mixtures may have beneficial effects on silage quality and animal performance in ruminants. However, the addition of MS and FS to ensiled grass is relatively unexplored. Therefore, this study systematically evaluated the effect of their administration at different doses to select an effective treatment to modulate the ensiling characteristics of aBC. In the first trial, fresh or pre-ensiled materials (PBC) were compared with ensiled PBC treated with: 0% MS 0% FS, 4% MS, 8% MS, 0.015% FS, 0.030% FS, 4% MS + 0.015% FS, 4% MS + 0.030% FS, 8% MS + 0.015% FS, and 8% MS + 0.030% FS on a fresh matter basis. The quality of ensiling characteristics was determined in laboratory-scale silos after 42 d of preservation. Based on these results, the second trial was further conducted in rumen cultures to ensure that the selected treatment would not impair rumen fermentation. For this, ruminal biogases, rumen fermentation profiles, and microbial communities were evaluated. Ensiled PBC with the incremental addition of MS and FS resulted in the observations for anthocyanin contents and the ensiling characteristics of the aBC silages. The combination of MS (4%) and FS (0.030%) incorporated into silages had the highest silage production effect among the experimental treatments. This combination demonstrated the sustainable mitigation of the ruminal biogases of methane and carbon dioxide without impairment of total gas production. Concurrently, this combination improved total volatile fatty acid concentrations, modulated cellulolytic bacteria, and suppressed methanogenic bacteria in rumen fluids. The results presented here indicated that addition of a mixture of 4% MS and 0.030% FS to aBC resulted in an optimal balance of ensiling characteristics and is suitable for use in ruminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.