Abstract

Wound healing requires diverse functionalities in dressings, and conventional materials often fall short in water absorption and moisture regulation. Natural sodium alginate is popular in wound dressings due to its excellent film-forming ability, biocompatibility, ionic crosslinking, and pH responsiveness. However, it has limitations in physical stability and solubility in aqueous environments. This study enhanced alginate dressings by incorporating allantoin and treating with calcium chloride and citric acid to improve physicochemical properties and mechanical performance. Treatments for S2 to S5 prevented dissociation and maintained integrity, with suitable water absorption (363 %–442 %) and water vapor transmission rates (612.53–715.39 g × m2 × day−1). The treatments also improved tensile strength (44.90–55.19 MPa). S2 had the highest migration ratio (52.71 %) of L929 cells and wound healing rates for mice skin (86.6 %), indicating that calcium chloride treatment is beneficial. All dressings (S1 to S5) exhibited low cytotoxicity against L929 cells and low hemolysis ratios, indicating good biocompatibility. Higher allantoin content improved wound healing efficacy. This study provides valuable insights for the design and development of alginate dressings in wound repair, expanding allantoin's application in wound healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.