Abstract

In this study, we present the development of an advanced air pollution modeling approach, which incorporates cutting-edge stochastic techniques for large-scale simulations of long-range air pollutant transportation. The Unified Danish Eulerian Model (UNI-DEM) serves as a crucial mathematical framework with numerous applications in studies concerning the detrimental effects of heightened air pollution levels. We employ the UNI-DEM model in our research to obtain trustworthy insights into critical questions pertaining to environmental preservation. Our proposed methodology is a highly convergent quasi-Monte Carlo technique that relies on a unique symmetrization lattice rule. By fusing the concepts of special functions and optimal generating vectors, we create a novel algorithm grounded in the component-by-component construction method, which has been recently introduced. This amalgamation yields particularly impressive outcomes for lower-dimensional cases, substantially enhancing the performance of the most advanced existing methods for calculating the Sobol sensitivity indices of the UNI-DEM model. This improvement is vital, as these indices form an essential component of the digital ecosystem for environmental analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.