Abstract

The client computing platform is moving towards a heterogeneous architecture that combines scalar-oriented CPU cores and throughput-oriented accelerator cores. Recognizing that existing programming models for such heterogeneous platforms are still difficult for most programmers, we advocate a shared virtual memory programming model to improve programmability. In this paper, we focus on performance, and demonstrate that users need not sacrifice performance for programmability. We describe our approaches, experiences, and results in optimizing MYO on a heterogeneous platform consisting of a CPU and an Aubrey Isle accelerator. Our efforts involve the whole system software stack including the OS, runtime, and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.