Abstract
The utilization of genotyping has gained significant popularity in tree improvement programs, aiding in enhancing the precision of breeding values, removing pedigree errors, the assessment of genetic diversity, and evaluating pollen contamination. Our study explores the impact of utilizing 5308 SNP markers to genotype seed orchard parents (166), progeny in progeny trials (667), and seedlot orchard seedlings (780), to simultaneously enhance variance components, breeding values, genetic diversity estimates, and pollen flow in the Region I white spruce (Picea glauca) breeding program in central Alberta (Canada). We compared different individual tree mixed models, including pedigree-based (ABLUP), genomic-based (GBLUP), and single-step pedigree-genomic-based (ssGBLUP) models, to estimate variance components and predict breeding values for the height and diameter at breast height traits. The highest heritability estimates were achieved using the ssGBLUP approach, resulting in improved breeding value accuracy compared to the ABLUP and GBLUP models for the studied growth traits. In the six orchard seedlots tested, the genetic diversity of the seedlings remained stable, characterized by an average of approximately 2.00 alleles per SNP, a Shannon Index of approximately 0.44, and an expected and observed heterozygosity of approximately 0.29. The pedigree reconstruction of seed orchard seedlings successfully identified consistent parental contributions and equal genotype contributions in different years. Pollen contamination levels varied between 11% and 70% using SNP markers and 8% to 81% using pollen traps, with traps both over- and under-estimating contamination. Overall, integrating genomic information from parents and offspring empowers forest geneticists and breeders in the Region I white spruce breeding program to correct errors, conduct backward and forward selections with greater precision, gain a deeper understanding of the orchard’s genetic structure, select superior seedlots, and accurately estimate the genetic worth of each orchard lot, which can ultimately result in increased and more precise estimates of genetic gain in the studied growth traits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.